

PHYSICS DICTIONARY F4

F4 - CHAPTER 1 - INTRODUCTION TO PHYSICS

TERMS	DEFINITION / MEANING	FORMULA
Physical	Quantities that can be measured	
quantities		
Base	Physical quantities that cannot be defined in terms of	
quantities	other quantities	
Derived	Physical quantity obtained from the combination of base	
quantities	quantities through multiplication or division or both	
Base units	Units that cannot be defined in terms of other units	
Derived units	Units which are obtained from the combination of base	
	units through multiplication or division or both	
Consistency	The ability (of a measuring instrument) to measure a	
	quantity with little or no deviation among the	
•	measurements	
Accuracy	The closeness of a measurement to the actual value	
Sensitivity	The ability (of a measuring instrument) to detect a small	
_	change in the quantity to be measured	
Error	The difference between the measured value and the	
Curata matia	actual value.	
Systematic	Errors in the calibration of instruments of the non-zero	
errors	reading when the actual reading should be zero	
Bandam arrar	Errors due to the mistelyee made by the observer when	
Random error	Errors due to the mistakes made by the observer when	
	of the ove or the instrument	
Parallax orror	Error due to the incorrect positioning of the eve when	
	reading a measurement	
Zero error	The pon-zero reading when the actual reading should be	
	zero that is the pointer of the instrument does not return	
	to the zero position when it is not being used	
Vector quantity	Physical quantities that have both magnitude and	
	direction	
Scalar quantity	Physical quantities that have magnitude only	

F4 - CHAPTER 2 – FORCE & MOTION

TERMS	DEFINITION / MEANING	FORMULA
Distance	The total path length travelled from one location to	
	the other	
Displacement	The distance between two locations measured along	
	the shortest path connecting them in a specified	
Speed	Bate of change of distance OP	
Speed	Distance travelled per unit time	$v = \frac{s}{-}$
		t
Velocity	Rate of change of displacement	$v = \frac{s}{s}$
		t
Acceleration	Rate of change of velocity	v – u
		a =t
Deceleration	Rate of decrease in velocity	v - u
		$-a = \frac{1}{t}$
Inertia	The tendency of the object to remain at rest or if moving	ι
	to continue its motion	
Mass	The quantity of matter in an object	
Momentum	Product of mass and velocity	p = mv
Principle of	In a closed system, the total momentum before	
conservation of	collision is equal to the total momentum after collision	
momentum	provided there is no external force	
Electic collicion	A colligion in which the chiests do not combine offer	
	collision	$m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2$
Inelastic	A collision in which the objects are combined after	$m_1 + m_2 - (m_1 + m_2)$
collision	collision	$m_1u_1 + m_2u_2 - (m_1 + m_2)v$
Force	An agent that can change the shape, velocity and	F = ma
	displacement of an object	
Unbalanced / net	A single force that represents the combined effect of	
/ resultant force	two or more forces with magnitude and direction	
/ Eorces in	no net force. The object is satationary or moves with	
equilibrium	a constant velocity in a straight line	
oquinorium		
Impulsive force	Rate of change of momentum	m(v-u)
		$F = \frac{1}{t}$
		l
Impulse	Change in momentum	impulse = mv – mu
		Impulse = Ft
Gravitational	The region around the earth which an object	
field	experiences a force towards the centre of earth	
Crevit-tier - I	The growitational farms action and success of 4 low 1	a – 40 M L1
Gravitational	at that point	g = 10 N kg
neiu siteliyili	ן מו נוומו 10111	

Gravitational	The acceleration of an object due to the pull of the	g = 10 m s ⁻²
acceleration	gravitational force	
Free fall	The motion in which the object falls due to gravitational force only	
Weight	The gravitational force acting on the object	W = mg
Newton's	The acceleration produced by a net force on an object	- m(v-u)
Second Law of	is directly proportional to the magnitude of the net force	$F = \frac{1}{t}$
Motion	applied and is inversely proportional to the mass of the object.	t
Resolution of	The separation of a single force into two perpendicular	
forces	components called the vertical and the horizontal component	
1 Newton	Is the force which acts on a body of mass 1 kg and causes the body to accelerate at 1 m s $^{-2}$	
Energy	The ability to do work	
Work done	The product of the applied force and the displacement in the direction of the applied force	W = Fs
Power	The rate at which work is done OR the amount of work done per second	$P = \frac{W}{t} = \frac{E}{t}$
1 watt	The power generated when 1 J of work is done in 1 s	
Kinetic energy	The energy of an object due to its motion	$E_k = \frac{1}{2}mv^2$
Gravitational potential energy	The energy of an object due to its higher position in the gravitational field	$E_p = mgh$
Principle of	Energy cannot be created or destroyed. Energy can be	
Conservation of	transformed from one form to another.	
energy	The total energy in a closed system is constant .	
Efficiency	The percentage of the energy input that is transformed into useful energy	$E = \frac{E_{out}}{E_{in}} \times 100\%$
Elasticity	The ability of an object to return to its original size /	
	length / shape when the force that is acting on it is removed.	
Hooke's Law	The extension of a spring is directly proportional to the	F = kx
	applied force provided the elastic limit is not exceeded	
Elastic limit	I he maximum force which can act on an object before	
Force constant /	Force per unit extension	E
spring constant		$k = \frac{F}{x}$
Elastic potential	The energy stored in an object when it is stretched or	$E = \frac{1}{E} = $
energy	compressed	$E_{p} = \frac{-1}{2}Fx = \frac{-1}{2}Kx^{-1}$

TERMS	DEFINITION / MEANING	FORMULA
Density	Mass per unit volume	
Pressure	Magnitude of force acting perpendicularly to a surface per unit area of the surface OR Force per unit area	$P = \frac{F}{A}$ $P = \rho g h$
1 Pascal or 1 N m ⁻²	The pressure exerted on a surface when a force of 1 N acts perpendicularly to an area of 1 m $^{\rm 2}$	
Atmospheric pressure	The pressure due to the weight of the air acting per unit area on the earth's surface	
Pascal's Principle	The pressure applied to an enclosed fluid is transmitted uniformly to every part of the liquid.	$P = \frac{F_1}{A_1} = \frac{F_2}{A_2}$ $P = A_1 h_1 = A_2 h_2$
Buoyant force	The upward force exerted by a fluid when an object is wholly or partially immersed in the fluid	$F_{B} = \rho V g$
Archimedes' Principle	For a body wholly or partially immersed in a fluid, the buoyant force is equal to the weight of the fluid it displaces	
Bernoulli's Principle	In a moving fluid, where the speed is low, the pressure is high and where the speed is high, the pressure is low	

F4 - CHAPTER 3 – FORCES & PRESSURE

"DON'T WATCH THE CLOCK; DO WHAT IT DOES. KEEP GOING."

F4 - CHAPTER 4 – HEAT

TERMS	DEFINITION / MEANING	FORMULA
Thermal equilibrium	The situation in which two objects which are in thermal contact have the same rate of heat transfer and the same temperature The NET heat flow between the two objects is zero	
Lower fixed point // ice point	The temperature at which pure ice melts under the standard atmospheric pressure	
Upper fixed point // Steam point	The temperature of steam from pure water that is boiling under standard atmospheric pressure	
Heat capacity	The amount of heat required to increase the temperature of an object by 1°C	
Specific heat capacity	The amount of heat that must be supplied to an object of mass 1 kg to increase its temperature by 1°C	$c = \frac{Q}{m\theta}$
Specific latent heat of fusion	The amount of heat required to change 1 kg of a substance from solid to liquid without any change in temperature	$1 = \frac{Q}{m}$
Specific latent heat of vaporisation	The amount of heat required to change 1 kg of a substance from liquid to gas without any change in temperature	$1 = \frac{Q}{m}$
Boyle's Law	For a fixed mass of gas, the pressure of the gas is inversely proportional to its volume when the temperature is kept constant	$P_1V_1 = P_2V_2$
Charles' Law	For a fixed mass of gas, the volume of the gas is directly proportional to the absolute temperature of the gas when the pressure is kept constant	$\frac{V_1}{T_1} = \frac{V_2}{T_2}$
Pressure Law	For a fixed mass of gas, the pressure of the gas is directly proportional to the absolute temperature of the gas when the volume is kept constant	$\frac{P_1}{T_1} = \frac{P_2}{T_2}$
Absolute zero	The lowest temperature in theory in which the pressure and the kinetic energy of gas molecules are zero	

GREAT THINGS NEVER CAME FROM COMFORT ZONES KEEP MOVING FORWARD WITH THE GREAT MOMENTUM....

F4 - CHAPTER 5 – LIGHT

TERMS	DEFINITION / MEANING	FORMULA
Law of reflection	i) The incident ray, the reflected ray and the normal	
	all lie in the same plane	
	ii) The angle of incidence is equal to the angle of	
	reflection	
Principal axis of	The line passing through the vertex, P and the centre	
a curved mirror	Of curvature, C	
	The centre of the sphere that forms the curved mirror	
Eacal point E of	The point on the principal axis where the reflected rays	
a	converge that is meet and intersect	
concave mirror		
Focal point, F of	The point on the principal axis where the reflected rays	
a convex mirror	diverge that is appear to spread out from behind the	
	mirror	
Real image	The image that can be formed / displayed on a screen	
Virtual image	The image that cannot be formed on a screen	
Reflection of	The return of light waves when they hit a reflector	
light	(mirror)	
Refraction of	The bending of light ray at the boundary as it travels	
light	from one medium to another of different optical	
	densities	
Law of	The incident ray, the refracted ray and normal all lie in	
refraction	the same plane.	
	I ne ratio of sin i / sin r is a constant	
Pofractivo	(Shell's Law) The value of the constant (sin i / sin r) for a light ray	
index n	nassing through a vacuum into a given medium	$\eta = \frac{\sin \theta}{1}$
macx, m	passing through a vacuum into a given mediam	sinr
		=speed in air
		speed in medium
		_ H(Real)
		h (Apparent)
Real depth	The distance of the real object from the surface of a	
•	medium	
	(eg: water, glass)	
Apparent depth	The distance of the virtual image from the surface of the	
	medium (eg: water, glass)	
Critical angle, c	The angle of incidence in the denser medium when the	
	angle of refraction in the less dense medium is 90°	
I otal internal	The condition in which the light ray from a denser	
reflection	the denser medium when the angle of incidence is	
	areater than the critical angle of incluence is	
Focal point F of	A common point on the principal axis where all the rave	
a lens	narallel to the axis converge to it after passing through	
	a convex lens or appear to diverge from it after passing	
	through a concave lens	

Power of lens	The reciprocal of the focal length	$P = \frac{1}{f}$
Focal length, f	The distance between the focal point and the optical centre	
Linear magnification	The ratio of the image size to the object size OR the ratio of the image distance to object distance	$m = \frac{v}{u}$

PHYSICS DICTIONARY F5

F5 - CHAPTER 1 – WAVES

TERMS	DEFINITION / MEANING	FORMULA
Wave	A travelling disturbance from a vibrating or oscillating	
	source which carries energy along with it in the	
	direction of the propagation	
Vibration /	A uniform to –and-fro motion of an object / particle from	
oscillation	a vibrating source	
Transverse	A wave in which the particles of the medium oscillate in	
wave	the direction perpendicular to the direction in which	
	the wave moves	
	(eg: water, light, all EM waves)	
Longitudinal	A wave in which the particles of the medium oscillate in	
wave	the direction parallel to the direction in which the wave	
	moves	
	(eg: sound)	
Wavefront	An imaginary line that joins all identical points on a	
O	Wave	
One complete	The to-and-fromotion of an object / particle from one	
Amplitudo o	The maximum displacement from the mean position	
(SLunit · m)	of a wave	
Period, T	The time taken to complete one oscillation	1
(SI unit :s)		$T = \frac{1}{f}$
Frequency, f	The number of complete oscillations made in 1 second	1
(SI unit : Hz)		$f = \frac{T}{T}$
Wavelength	The herizental distance between two eucococive	$\frac{1}{\lambda - y/f}$
wavelength, A	equivalent points on a wave	$\Lambda = V / I$ $V = f \lambda$
Damping	Energy loss from an oscillating system to the	V I X
Damping	surrounding in the form of heat energy	
Natural	The frequency in which an oscillating system	
frequency	vibrates when no external force is applied	
Resonance	The phenomena in which an oscillating system is driven	
	at its natural frequency by a periodic force. Maximum	
	energy transfer occurs to the system and it oscillates at	
Deflection of	a large amplitude	
Reflection of	after they encounter an obstacle known as reflector	
Refraction of	The phenomena in which there is a change of	
	direction of propagation due to a change of speed	
114453	when water waves travel one area to another of	
	different depths	

Diffraction of waves	The phenomena that refers to the spreading out of waves when they move through a gap or round an obstacle	
Interference of waves	The phenomena in which two sets of coherent waves meet / combine	
Coherent waves	Waves which maintain a constant phase difference, amplitude and frequency	
Principle of Superposition	The combined wave forms of two or more interfering waves waves is given by the sum of the displacement of the individual wave at each point of the medium	
Constructive interference	The combination / superposition of two coherent waves in which the vertical displacements of the two waves are in the same direction	
Destructive interference	The combination / superposition of two coherent waves in which a positive displacement of a wave meets a negative displacement of another wave and the combined amplitude becomes zero	
Audio waves	Sound waves generated between 20 Hz and 20 kHz and can be heard by normal human ears	
Infrasound	Sound with frequency below 20 Hz	
Ultrasound	Sound with frequency above 20 kHz	
Electromagnetic spectrum	Consists of a group of waves with similar natures and are arranged in increasing frequencies and decreasing wavelengths	
Electromagnetic waves	Waves which consist of a joint electric and magnetic fields which oscillate perpendicular to each other	

Our greatest weakness lies in giving up. The most certain way to succeed is always to try just one more time -Thomas A. Edison

F5 - CHAPTER 2 – ELECTRICITY

TERMS	DEFINITION / MEANING	FORMULA
Electric current	The rate of charge flow in a circuit	$I = \frac{Q}{t}$
1 ampere	The electric current that flows through a conductor if 1 coulomb of charge flows through the conductor in 1 second	A = C s ⁻¹
Electric field	A region in which an electric charge experiences an electric force	
Potential difference	The work done or the energy that would be required to move 1 C of charge from one point to another in a circuit	$V = \frac{E}{Q}$
	points is 1 J	V = 3 C
Resistance	The ratio of potential difference across a conductor to the electric current flowing through the conductor	$R = \frac{V}{I}$
Ohm's Law	The electric current passing through an ohmic conductor is directly proportional to the potential difference between its end provided that the temperature and other physical properties of the conductor are constant	V = IR
Series circuit	All the components are connected one after another in a single path	
Parallel circuit	All the components are connected with their corresponding ends joined together at common points to form separate and parallel paths	
Electromotive force (emf)	The work done by a source (dry cell / battery) in driving a unit charge around a complete circuit	E = I(R+r) $E = V + Ir$
Internal resistance, r	The resistance against the moving charge due to the electrolyte in the cell / battery	$r = \frac{E - V}{I}$
Electrical power	The rate of electrical energy dissipated or transferred	$P = \frac{W}{t}$

DON'T BE THE SAME BE **BETTER!**

F5 - CHAPTER 3 – ELECTROMAGNETISM

TERMS	DEFINITION / MEANING	FORMULA
Electromagnet	A temporary magnet made by winding a coil of	
	insulated wire round a soft iron core	
	A temporary magnet when current flow through a	
	conductor	
Magnetic field	A region round a current – carrying conductor in	
	which a magnetic force acts	
	A region where magnetic material experience force	
Catapult field	The resultant magnetic field due to the	
	combination of the magnetic field due to the current	
F la atua wa a wa atia	In the conductor and the external magnetic field	
Electromagnetic	The setting up of an electromotive force in a	
induction	conductor due to a change in the magnetix hux	
	a magnetic field. The induced omf will cause induced	
	current to flow	
	Production of inducced current when there is a	
	change in magnetic field / flux magnet	
Lenz's Law	The direction of the induced current in such that	
	the change producing it will be opposed	
Faraday's Law	The magnitude of the induced emf is directly	
	proportional to the rate of change of magnetic flux or	
	the rate of cutting of the magnetic flux	
Direct current	A current that flows in one direction only in a circuit	
	and the magnitude of the current maybe constant or	
	changes with time	
Alternating current	A current which flows to and fro in two opposite	
	directions in a circuit and it changes its direction	
Tropoformor	periodically	
Transformer	A device which works on the principle of	$\frac{Np}{N} = \frac{Ns}{N}$
	down alternating current voltages	Vp Vs
Sten-un	A transformer where the number of turns in the	
transformer	secondary coil is greater than the number of turns in	
d'ansionner	the primary coil the voltage across the secondary	
	coil is greater than the voltage across the primary	
	coil	
Step-down	A transformer where the number of turns in the	
transformer	secondary coil is less than the number of turns in the	
	primary coil, the voltage across the secondary coil is	
	less than the voltage across the primary coil	
Ideal transformer	A transformer in which the output power is equal to	$P_{out} = P_{in}$
	the input power and there is no energy loss during	VI = VI
	the process of transforming the voltage	's*s 'p*p
Eddy current	The current induced in the soft iron core due to	
	the changing magnetic field produced by the	
	alternating current in the coils	

National Grid	A network system of cables which connects all the	
Network	power stations and substations in the country to the	
	consumers in a closed network to transmit electricity	

F5 - CHAPTER 4 – ELECTRONIC

TERMS	DEFINITION / MEANING	FORMULA
Thermionic	The process of emission of electrons from the	
emission	surface of a heated metal	
Cathode ray	The stream of electrons which moves from cathode	
	to anode at high speed across a vacuum	
Semiconductor	A material which can conduct electricity better than	
	insulator, but not as well as conductor	
Doping	A process of adding a certain amount of specific	
	impurities called dopants to a semiconductor to	
	increase its conductivity	
n-type	Semiconductor obtained when pentavalent atoms	
semiconductor	which are doped into the intrinsic semiconductor	
	contribute extra electrons. Free electrons become	
	the majority charge carrier and the holes become	
	the minority carrier	
p-type	Semiconductor obtained when trivalent atoms	
semiconductor	which are doped into the intrinsic semiconductor	
	contribute extra holes. Free electrons become the	
	minority charge carrier and the holes become the	
	majority charge carrier	
p-n junction	Formed when pieces of n-type and p-type	
	semiconductors are fused together	
semiconductor	An electronic device made from a p-n junction that	
diode	allows current to flow in one direction only but blocks	
	it in the opposite direction	
Forward bias	The connection in which the p-type (anode) of the	
	diode is connected to the positive terminal of a	
	battery and the n-type (cathode) is connected to the	
	negative terminal of the battery	
Reverse bias	The connection in which the p-type (anode) of the	
	diode is connected to the negative terminal of a	
	battery and the n-type (cathode) is connected to the	
	positive terminal of the battery	
Rectifier	An electrical device that converts alternating current	
	to direct current	
Half-wave	A process where only half of every cycle of an	
rectification	alternating current is made to flow in one direction	
	only.	

Full-wave rectification	A process where both halves of every cycle of an alternating current is made to flow in the same direction	
Transistor	An electronic device which has three terminals labelled base, collector and emitter, made by coalescing (fusing) the n-type and p-type semiconductors	
Logic gates	A switching circuit made up of a combination of transistor switches which has one or more inputs but only one output	
Truth table	A record of all the possible combinations of inputs and the corresponding outputs for a particular logic circuit	

F5 - CHAPTER 5 – RADIOACTIVITY

TERMS	DEFINITION / MEANING	FORMULA
Proton number, Z	The number of protons in the nucleus of an atom	
Nucleon number, A	The total number of protons and neutrons in the	
	nucleus of an atom	
Isotopes	Atoms of an element which have the same proton	
	number but different nucleon number	
Radioactivity	The spontaneous disintegration of an unstable	
	nucleus	
	accompanied by the emission of an energetic	
	particle or a	
	photon (or radioactive emission)	
Radioactive decay	The process in which an unstable nucleus changes	
	into a more	
	stable nucleus by emitting radiation	
Radiation	The energy given out by an unstable nucleus in the	
	form of	
	energetic particles or photon	
Ionising effect	The production of charged particles called ions	
	when the	
	energetic particle or photon passes through a	
	medium, it can	
	knock electrons out of the atoms and molecules of	
	the medium.	
Hait-life	I ne time taken for the number of the undecayed	
	nuclei in the	
Dediciontence	sample to be reduced to half of its original humber	
Radioisotopes	Unstable nuclei of an element which have the same	
	number of	
	protons but different number of neutrons which	
	uecay and give	
	out radioactive emissions	

Atomic mass unit (amu or u)	$\frac{1}{12}$ of the mass of the carbon-12 atom	
Nuclear fission	The process of splitting a heavy nucleus into two lighter nuclei which releases emormous amount of energy	
Chain reaction	Self-sustaining reaction in which the products of a reaction can initiate another similar reaction	
Nuclear fusion	The process of combining two lighter nuclei to form a heavier nucleus which releases enormous amount of energy	
Einstein's Principle	Mass and energy are not conserved separately and can be exchanged one for the other by using this equation : $E = mc^2$ where E = energy released(J), m = mass defect(kg) c = speed of light (3 x 108 ms -1)	$E = mc^2$

Sumber

Disediakan oleh : ALINA IMAN ARIF : PN. NOR'AIDAH IBRAHIM

CHARACTERISTICS, LEVEL & EXPLANATION

FORCE & MOTION

NO.	CHARACTERISTIC	LEVEL	EXPALANATION
1	Impulsive force, F	LARGE	The change in momentum is large //
			the time interval of interaction is small
		SMALL	The change in momentum is smaller // the time
		SWALL	interval of interaction is longer
2	Elastic limit of spring	HIGH	Larger force can be applied provided the elastic limit
			has not been exceeded
		LOW	If the elastic limit exceeded, spring will not return to its
			original shape and size or might snap easily
3	Diameter of coil of	SMALL	Stronger and stiffer and able to sustain heavier weight
	spring		(high spring constant, k)
		BIG	Soft Spring and not able to sustain heavier weight
4	Diameter of wire of	SMALL	Soft Spring and not able to sustain heavier weight
	spring	BIG	Stronger and stiffer and able to sustain heavier
		2.0	weight (high spring constant, k)
5	The spring // force	HIGH	Does not change its shape easily when force is
	constant, k or Stiffness		exerted (Stronger spring and less elastic)
	of spring	LOW	Change its shape easily when force is exerted
	(a larger gradient		(Soft spring and more elastic)
	indicates a stiffer spring)		
6	Strength of spring	STRONG	Does not break easily // snap when force is given
		WEAK	Break easily/snap when force is given
7	Rate of rusting	HIGH	Rust quickly
		LOW	Hard to/does not/slow to rust//making a durable
			material not easily corroded
8	Rate of expansion	HIGH	Expand more to certain increase in temperature
		LOW	Not easily expand when temperature increases
9	Position of the centre	HIGH Not stable	
	of gravity from the	n the LOW Very stable	
	ground		

HEAT

NO.	CHARACTERISTIC	LEVEL	EXPALANATION	
1	Pressure of Gases	HIGH	The collisions between the particles and the walls of	
			the container per unit area increase	
			The collisions between the particles and the walls of	
		LOW	the container per unit area decrease	
2	Volume of Gases	LARGE	When gas expands, the volume of the gas is allowed	
			to increase freely	
		SMALL	When gas not expands, the volume of the gas is	
		SWIALL	allowed to decreases freely	
3	Temperature of gases	HIGH	The average kinetic energy of the gas molecules	
			increase	
		IOW	The average kinetic energy of the gas molecules	
		2011	decreases	
4	Freezing point	HIGH	Freeze easily // freeze at higher temperature	
		IOW	Does not freeze in cold weather easily //	
			freeze at lower temperature	
5	Boiling point	HIGH	Does not evaporate// does not boil easily	
		LOW	Evaporate easily /boiling easily	
6	Melting point	HIGH	Does not melt easily // melting at higher temperature	
		LOW	Melt easily // melting at lower temperature	
7	Specific latent heat of	HIGH	Large amount of heat for boiling //	
	vaporization		Takes longer time to boil	
		LOW	Small amount of heat for boiling //	
_		_	lakes shorter time to boil	
8	Specific latent heat of	HIGH	Large amount of heat for melting //	
	fusion		Takes longer time to melt	
		LOW	Small amount of heat for melting //	
0	Specific heat conseit.		Takes shorter time to melt	
9	Specific neat capacity		More amount of neat is absorbed to increase the	
		HIGH	lemperature //	
			Not easily fielded // Making it a good insulator	
			Less amount of heat is absorbed to increase the	
			temperature //	
		LOW	Hot quickly	
10	Thermal conductivity	V More heat lost to the surrounding //		
10		HIGH	Can transfer heat easily	
			To avoid heat lost to the surrounding //	
		LOW	Cannot transfer heat easily	

ELECTRICITY

NO.	CHARACTERISTIC	LEVEL	EXPALANATION	
1	emf cell	MORE	Supply bigger current through the same resistor	
		LESS	Supply smaller current through the same resistor	
2	Resistance	HIGH less current flow		
		LOW	more current flow	
3	Resistivity of the wire		More heat is produced //	
		HIGH	higher resistance for the filament in order to generate	
			light and heat.	
		IOW	A large current flow //	
		2011	less energy dissipated as heat	
4	Electric devices power	HIGH	Use more electric energy in one second	
		LOW	Use less electric energy in one second	
5	Electric devices voltage	HIGH	Require smaller current to generate power	
		LOW	Require bigger current to generate power	
6	Voltmeter range	BIG	Have lower sensitivity level //	
		5.0	can measure bigger potential difference (voltage)	
		SMALL	Have lower sensitivity level //	
		•	can measure bigger voltage	
7	Ammeter range	BIG	Have lower sensitivity level //	
			can measure bigger current	
		SMALL	Have higher sensitivity level //	
•	Malding a sind of using	can measure smaller current		
o	meiting point of wire	пісп	through it	
		the wire easily melt //		
		LOW	electric shock occur	
9	Density of cable/wire	HIGH	Wire is more heavy	
	Density of casic/wire		Wire is lighter //	
		LOW	to reduce the weight of the wire//easier to be carried	
			around	
10	Ammeter is connected in			
	series with bulb or devices	Has a lo	w resistance so that its existence has little effect on the	
	because	magnitude of current flowing		
11	Voltmeter is connected in			
	parallel with bulb or	Has a hig	gh resistance, current flowing through it is negligible	
	devices because			
12	Copper wire	Good conductor of electricity //		
		It has low resistance and less energy is lost as heat //		
- 10		lower specific heat capacity		
13	Bulb/device is connected	Voltage across each bulb or devices is the same//		
	in parallel because	If one of the branches is defective, the flow of electricity will not be		
		Can be switch on individually		
14	Bully composited in caries	One of the bulb is broken, the current flows in entire circuit access		
14	Duib connected in series	(stop flowing) //		
		All voltage of bulb are not equal		

15	Factor affecting R for metal (conductor)	Length of wire, I increases	Resistance also increases
	ρl	Cross-sectional area, A increases	Resistance decreases
	$R = \frac{A}{A}$	Type of substance	R _{silver} <r <sub="">copper < R _{constantan} < R _{nichrome} < R _{tungsten}</r>
		Temperature increases	Resistance also increases

Pressure can burst a pipe, But... pressure also make diamonds, so... PUSH YOURSELF

No One Else Is Going to Do It for You

ELECTROMAGNETISM

NO.	CHARACTERISTIC	EXPALANATION
1	Catapult field	The magnetic field from the current in the conductor and the
		magnetic field from magnetic combine to produce resultant
		field
2	An electromotive force	Is induced in a conductor when there is a relative motion that
	produced / Induced EMF	causes the conductor to cut the magnetic field lines
3	The direction of the magnetic	Can be determined by Fleming 's Left-hand rule.
	force	(used in electric motor)
4	The direction of the induced	Can be determined by Fleming 's Right-hand rule.
	current	(used in electric generator/ dynamo)
5	The speed of rotation of a	(i) The size of the current
	direct current (DC) motor	(ii) The strength of the magnetic field from permanent magnet
	depends on:	(iii) The number of turn of the coil
		(iv) The resistance of wire
6	The magnitude of magnetic	(i) The size of the current
	force on a current-carrying	(ii) The strength of the magnetic field from permanent magnet
	conductor depends on:	(iii) The resistance of wire
7	Step-down transformer	The secondary voltage produced is less than primary voltage
		(i) To reduce voltage
		(ii) To increase current flow
8	Step-up transformer	The secondary voltage produced is more than primary voltage
		(i) To increase voltage
		(ii) To reduce current flow
9	Energy losses in a transformer	Eddy's currents in the core (produce by changing
	because	magnetic field)
		Can be reduced by using a laminated iron core
		Magnetism and demagnetization of the core
		Can be made easy by using soft iron core
		Leakage of magnetic flux
		Can be reduced by winding the secondary and primary coils
		on top of each other
		Heating effect in the coils
		Can be reduced using thicker wire made of good
		conductor like copper (by reducing the wire resistance)

ELECTRONIC

NO.	CHARACTERISTIC	EXPALANATION	
1	Doping of semiconductor	A process of adding a certain amount of specific impurities to semiconductor to increase their conductivity	
2	n-type semiconductor	Is produced by replacing some of the silicon atoms in silicon with pentavalent atoms such as Phosphorus , Arsenic or Antimony (to create extra free electrons)	
3	p-type semiconductor	Is produced by replacing some of the silicon atoms in silicon with <i>trivalent atoms</i> such as Boron, Aluminum or Gallium (to create extra free holes)	
4	Rectification	A process to convert an alternating current (ac) into a direct current (dc) by using diode	
5	Capacitor smoothing	The discharge current from a capacitor helps to maintain a steady output voltage across a resistor by supplying current at all time. The capacitor used for smoothing purpose only works with alternating current (ac)	
6	Diode	Allows the current to flow easily in only one direction	
7	Alternating current	Current flows in two directions consecutively	
8	Forward bias	 When a p-type semiconductor is connected to the positive terminal and a n-type semiconductor is connected to the negative terminal of a cell electrons from the n-type are pulled across the p-n junction, this will cause the current to flow 	
9	Reverse bias	 When a n-type material is connected to the positive terminal and a p-type material is connected to the negative terminal of a cell electrons from the n-type are pulled toward the positive terminal of cell the junction becomes wider and the current stop to flow 	
10	Function of transistor	 (i) As a currents amplifier (ii) As an automatic switch (eg. an automatic light controlled switch or an automatic heat controlled switch) 	

RADIOACTIVITY

NO.	CHARACTERISTIC	LEVEL	EXPALANATION	
1	Half life		Activation decrease slowly //	
		LONG	Long lasting radioactivity	
			Activation decrease faster //	
		SHORT	decompose quickly	
			// Short radioactivity	
2	Penetrating power		Can penetrate the body to be detected externally	
	(alpha, α -stopped by a		(gamma rays-can penetrate deep into the skin and	
	sheet of paper or a few cm	LONG	Inflict damage onto the cells)	
	of air)			
	(beta, β-stopped by a few		Cannot penetrate the body to be detected externally	
	mm of aluminum)	SHORT	(alpha particles)	
	(gamma, y -stopped by a			
2	few cm of lead)	It is soored	te her die // eesile te wee/stere d// sefer	
3	Radioisotope in solid	It is easy	to nandle // easily to use/stored// safer	
4	Ionizing power	HIGH Alpha particles have the strong ionizing effect		
	(ions per mm in air)	LOW Gamma ray have weaker ionizing effect on air molecule		
5	Effect of electric field		Beta particles have the deflection is greater due to the	
		HIGH	small mass of electron //	
		deflected towards the positive plate		
		LOW	Gamma ray not deflected because has no charge	
6	Effect of magnetic field	HIGH	Beta particles Greater deflection because beta particle	
			has a very small mass	
		LOW	Gamma ray no deflection because gamma has no	
7	Alpha particle	High ioni	zation nower //	
		able to ionize the air easily		
8	Beta particle	East moving electrons //		
•		very small mass //		
		lighter		
9	Gamma rays	Its high penetrating power //		
	-	less dangerous inside body //		
		do not ionize the cells//		
		it is less likely to be absorbed //		
		can kill bacteria, fungi, germ		

GRAPH & EXPLANATION

GRAPH & EXPLANATION

GRAPH & EXPLANATION

TOPIC	GRAPH	EXPLANATION
	V/V nichrome constantan copper silver I/A	V is directly proportional to I R _{silver} < R _{copper} < R _{constantan} < R _{nichrome}
ELECTRICITY	V/V	V decreases linearly with I From the formulae: E = V + Ir So, V = -rI + E in the form of Y = mX + c (-r = gradient) (electromotive force, E = intercept on the V-axis)
	T/s ↓ f/Hz	T is inversely proportional to f $T = \frac{1}{f}$
WAVES	v/ms ⁻¹ λ/m	Velocity ,v is directly proportional to wavelength, λ V = $f \lambda$